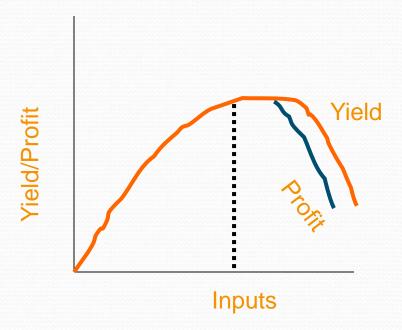
Predictive & Diagnostic Nutrient Testing for Florida

Rao Mylavarapu Professor, Soil & Nutrient Management Director, IFAS Analytical Services Laboratories Soil & Water Science Department, IFAS University of Florida

Nutrient Testing Program

- Offered as an educational component through Cooperative Extension Service as a part of Landgrant University mission
- All states have soil testing programs, and most include associated soil/tissue/waste/manure/ water testing facilities


IFAS Extension Soil Testing Laboratory

Mission....

"to serve citizens of Florida by providing selected soil, plant, water and waste testing interpretation and recommendation as an educational service through cooperative extension to guide management decisions affecting lime and fertilizer use efficiency"

Optimum Yield or Quality

- Optimum ideally should refer to economic and environmentally sustainable returns
- Existing approaches have been predominantly based on economics

Fertilization Philosophy

Basic Cation Saturation Ratio

> Buildup and Maintenance

Field Hydroponics

> Crop Nutrient Requirement

Fertilization Philosophy

Basic Cation Saturation Ratio

- There are ideal ratios of basic (Ca, Mg, and K) in the soil at which maximum yields occur
- Fertilizers are used to adjust soil-test results
- Popular with commercial laboratories
- Ratios are easy to calculate
- > Always require fertilizer

Fertilization Philosophy

Crop Nutrient Requirement

- Each nutrient must be supplied in adequate but nonexcessive amounts to achieve optimum crop response
- The contribution of the soil is measured indirectly by a calibrated soil test
- > Fertilizers are used only to supplement soil fertility
- Used by many Land-Grant and some commercial laboratories

Crop Removal vs. Crop Nutrient Requirement

- No Soil Testing
- Always Fertilize
- Luxury Consumption
- Pollution Potential Hi
- Treats soil as a bank

- Calibrated Soil Test
- Fertilizer amounts adjusted for soil contribution
- Based on plant need, not plant uptake
- Pollution Potential Lo
- Fertilize the plant not the soil

Field Calibration

Interpreting pre-plant soil-test values to FERTILIZER RECOMMENDATIONS in the field for Crop Response

Soil testing within the Lab is a 3- step process

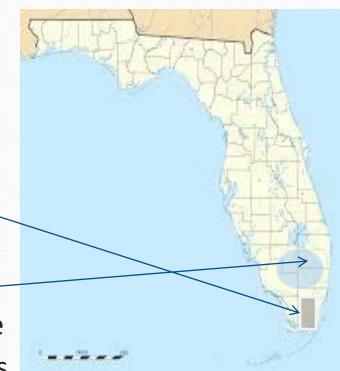
- 1. Analysis and computation of test results
- 2. Interpretation of the results
- 3. Nutrient Recommendations

preceded by establishing precise purpose of soil testing and <u>representative</u> soil sampling

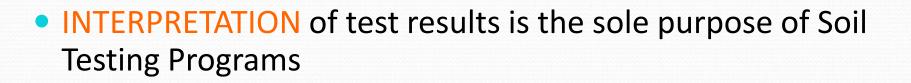
A. Analytical Procedures

- Chemical extraction of nutrients from the soil
 - Extraction procedure is expected to mimic release of nutrients from the soil
 - Extracted amounts of nutrients are calibrated with crop production
 - Extraction methods are specific to soils

• Different extractants are developed for different soils


Soil Extractants Used in Florida

Acid soils - Mehlich-3


(acetic acid, ammon. flouride, nitric acid, EDTA, ammon. nitrate)

-P, K, Ca, Mg, Cu, Zn, Mn

- Calcareous soils (pH ≥7.4)- AB-DTPA (Ammonium Bicarbonate-DTPA)
 - -P only
- Organic soils (IFAS EREC, Belle Glade) -Mehlich-3 extraction for P for sugarcane
 -Water extraction for P for all other crops
 -Acetic Acid for K, Mg, Ca, Na, Si

B. Interpretation

 Computed test results are categorized into levels of adequacy based on –

"Crop Nutrient Requirement"

 These interpretations are obtained through field research on soil test and crop response- "field calibration"

C. Nutrient Recommendations

Based on the test interpretation, nutrients may be recommended

Where relevant, lime requirement will be calculated and recommended

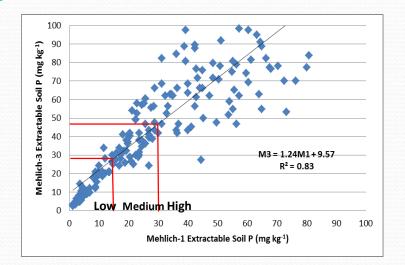
Recommendations are based on Crop Nutrient Requirement

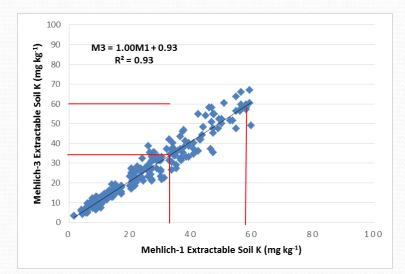
Mehlich Extraction Methods

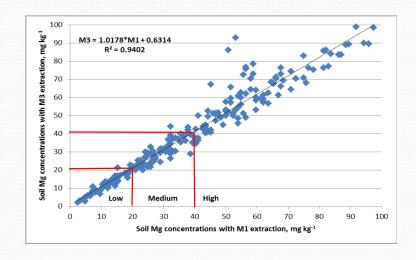
- Dr. Adolf Mehlich, worked as a consultant at the North Carolina Department of Agriculture during the 1950s and 70s
- Developed Mehlich-1, Mehlich-2 and Mehlich-3 series of soil extractants for the acid soils of the United States, each one as an improvement over the previous in sequence
- While Mehlich-2 failed completely right at the outset, Mehlich-1 and Mehlich-3 were found effective

Comparison- M1 & M3 Interpretative Charts

Interpretation for Mehlich-1 soil test results for agronomic and vegetable crops


	Very Low	Low	Mediu	m High	Very High
			ppm		
Р	<10	10-15	16-30	31-60	>60
K	<20	20-35	36-60	61-125	>125
Mg		<15	15-30	>30	


Interpretation for Mehlich-3 soil test results for agronomic and vegetable crops


Nutrient	LOW	MEDIUM	HIGH
Р	<u><</u> 25	26-45	>45
K	<u><</u> 35	36-60	>60
Mg	<u><</u> 20	21-40	>40

Comparison of Mehlich 1 & 3

	Mehlich-1	Mehlich-3
Valid pH Range	pH<6.5	Most normal soil ranges
Extraction of P	Limited in high Fe and Al	Fluoride facilitates
	accumulations	dissociation of phosphates
		from Fe and Al oxides
Extraction of	Dilute acid mixture, only	EDTA (chelate) extracts
Micronutrients	some micronutrients	micronutrients
	extracted	
Exchangeable Cations	Poor extractant for high	Ammonium nitrate
	CEC soils	extracts exchangeable
		cations

Lime Recommendation

- Adams-Evans Buffer (pH: 8.0)
- Buffer pH and Water pH values are used to calculate the lime requirement to raise the soil pH to the desired target pH value based on the crop grown
- Buffer pH is therefore not determined in every case

Nitrogen

- For N, there is no reliable soil test method
- N recommendation is based on crop response to applied N fertilizer; no test for N at the ESTL
- Soil samples should NOT be submitted to the ESTL for Ntest
- A general comment to this effect is printed on all the soil test reports

General Comment on all Reports

"These interpretations are based on soil test results and research/experience with the specified crop under Florida's growing conditions. We do not test soil for N, as there is no meaningful soil test for predicting N availability. Thus, the N recommendation was developed from research that measured response of the indicated crop to applied N fertilizer. If you expect significant nutrient release from organic sources such as crop residues or organic amendments, estimate the amount mineralized and subtract that amount from the fertilizer recommendations given below to arrive at crop needs."

UF/IFAS Analytical Services Laboratories Extension Soil Testing Laboratory Wallace Building 631 PO Box 110740 Gainesville, FL 32611-0740 Email: soilslab@ifas.ufl.edu Web: soilslab.ifas.ufl.edu Phone #:352-392-1950

Landscape & Vegetable Garden Test

TO:					Wilbe Alach 2800 Gaine Tel: 3	ther information er, Wendy L ma County Co NE 39 Ave esville, FL 320 52-955-2402 l: wilbewl@uf	op Extn Servic 509-2658	e
Client Identification:	#1 North	Slope			Set Nun	aber: E21516	Lab Number:	E50488
Crop: Landscape Az	aleas, Cam	ellias, Gard	enias, Hibisc	us, or Ixora			Report Date:	27-Nov-13
	S	OIL TEST I	RESULTS A	ND THEIR I	NTERPR	ETATIONS		
Target pH: pH (1:2 Sample:Water A-E Buffer Value:	r)	5.5 7.0 N/A						
MEHLICH-3 EXTRAC	TABLE		VLOW		v	MED	HIGH	VHIGH
PHOSPHORUS	(ppm P)	> 201					*****	
POTASSIUM	(ppm K)	51					******	
MAGNESIUM	(ppm Mg)	117					******	
CALCIUM	(ppm Ca)	> 2615						

	LIM	E AND FERTILIZER RECOMMENDATIONS
Crop:	Landscape	e Azaleas, Camellias, Gardenias, Hibiscus or Ixora
Lime:	0.0	lbs per 1000 sq. ft (1 Ton = 2000 Lbs)
Nitrogen:	1.10	lbs per 1000 sq. ft.
Phosphorus:(P2O5)	0	lbs per 1000 sq. ft.
Potassium: (K:O)	0	lbs per 1000 sq. ft.
Magnesium: (Mg)	0	lbs per 1000 sq. ft.

UF/IFAS Analytical Services Laboratories Extension Soil Testing Laboratory Wallace Building 631 PO Box 110740 Gainesville, FL 32611-0740 Email: soilslab@fas.ufl.edu, Web: soilslab.ifas.ufl.edu, Phone#:352-392-1950

Producer Soil Test

For further information contact:

Client Identification: Intrd-Drout

Set Number: E20679 Lab Number: E48591

Crop: Cool season Legumes or Legume-grass mixtures

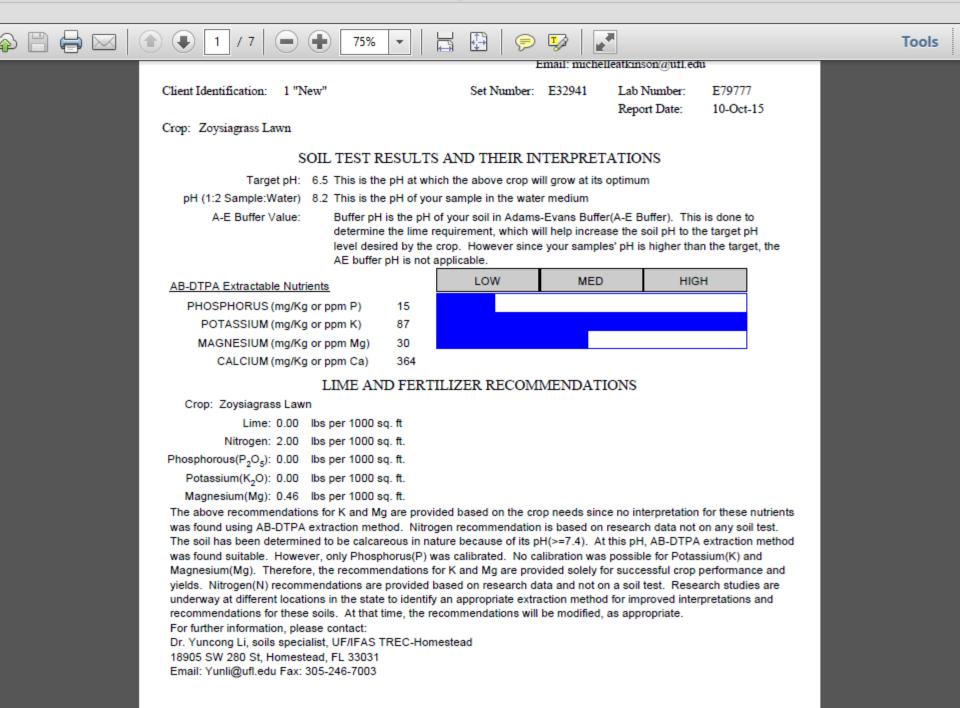
Report Date: 03-Dec-13

	S	OIL TEST	RESULTS A	ND THEIR INTE	RPRETATIO	<u>INS</u>	
Target pH: 6.5 pH (1:2 Sample:Water) 5.2 A-E Buffer Value: 7.48							
MEHLICH-3 EXTRAC	CTABLE		VLOW	LOW	MED	HIGH	V HIGH
PHOSPHORUS	(ppm P)	> 154				********	
POTASSIUM	(ppm K)	22		********			
MAGNESIUM	(ppm Mg)	7		*******			
CALCIUM	(ppm Ca)	72					

Crop:	Cool seas	Cool season Legumes or legume-grass mixtures(clovers, lupines, vetches)					
Lime:	3655.0	lbs per acre (1 Ton = 2000 Lbs) (Dolomitic Lime Recommended)					
Nitrogen:	0	lbs per acre					
Phosphorus: $(P_1 \cup_2)$	0	lbs per acre					
Potassium: $(\mathcal{K}_3(0))$	160	lbs per acre					
Magnesium: (Mg)	35	lbs per acre					

Print Date: 03-Dec-13

Page 1 of 1



UF/IFAS EXTENSION SOIL TESTING LABORATORY

Wallace Building 631 PO Box 110740 Gainesville, FL 32611-0740

Email: soilslab@mail.ifas.ufl.edu Web: soilslab.ifas.ufl.edu

Name: Address:				PrintDate: SetNum:		
City:				Sett tulli.		
		Elem	ents Re	ported as mg / kg in the	e Soil	
LabNum	SampleID	Cu	Mn	Zn		
4. j. 1. j.	1	0.97	12.86	2.65		
	2	1.75	15.28	1.91		
	3	1.14	17.20	2.32		
	16	2.03	19.33	2.50		

UF/IFAS EXTENSION SOIL TESTING LABORATORY

Wallace Building 631 PO Box 110740 Gainesville, FL 32611-0740

Email: soilslab@mail.ifas.ufl.edu Web: soilslab.ifas.ufl.edu

	FootNotes.	12/03/13
NoteNum	Description	
1	extraction method and are interpositive plant response to add	>" sign exceeded the normal working range of our erpreted as high or very high for P, K, or Mg. No ition of the nutrient is likely. In some circumstances, soil could be detrimental to plant performance or to
250	crop nutrient requirement for management are linked. Max attention to water managemen crop requirements. Excess irrigation	nd the nutrients already in the soil, will satisfy the this cropping season. Fertilizer and water imum fertilizer efficiency is achieved only with close t. Supply only enough irrigation water to satisfy on may result in leaching of N and K creating verfertilization has been shown to reduce vegetable
	and 24 inches (near harvest) b	ntain a constant water table between 18 (at planting) elow the top of the bed. Monitor water table depth in be "scrubbed" from the root zone.
	where micronutrients are know lb Cu, and 1.5 lb B/A. Use so years. When deciding about r	vegetable production within the past 2 years, or wn to be deficient, apply 5 lb Mn, 3 lb Zn, 4 lb Fe, 3 il testing to monitor micronutrient status every 2 nicronutrient applications, consider micronutrients es. Some micronutrients can build up in the soil
		needed when soil test is medium or lower in Mg. Mg from dolomitic limestone, when liming is
	for vegetable production or wind is added during liming activition	typically adequate in most soils used continuously here the Mehlich-1 Ca index is >300 ppm. Calcium es and from calcium carbonate present in irrigation Florida. These sources should be considered in the needs.
251	leaching losses and lessen dan micronutrients, if any, and 25	er should be applied in split applications to reduce ger of fertilizer burn. Broadcast all P2O5 and to 30% of the N and K2O in the bed at planting. in sidedress bands during the early part of the
	Additional, supplemental side	dress applications of 30 lb N/A and 20 lb K2O/A

Comment

- UF/IFAS fertilization and liming recommendations are advisory in nature and emphasize efficient fertilizer use and environmentally sound nutrient management without losses of yield or crop quality. It is generally assumed the nutrients will be supplied from purchased, commercial fertilizer and the expected crop yields and quality will be typical of economically viable production. Growers should consider IFAS recommendations in the context of their entire management strategy, such as return on investment in fertilizer and the benefits of applying manure or biosolids (sewage sludge) to their land.
- There is insufficient research available to support the use of UF/IFAS soil test results for environmental nutrient management purposes. Such use is discouraged until correlation is proven.

Tissue Analysis

- Tissue analysis is routinely used to monitor plant nutrient uptake, both seasonals, annuals and perennials
- Linked to physiological stages of the plants
- Used as a diagnostic tool for perennial crops such as fruit trees, turf grasses, etc.
- ESTL provides tissue testing to growers when an IFAS Specialist can help interpret the results

Analytical Procedures for Plant Tissues

- Standard Determination of Ca, Mg, P, K, Na, Mn, Cu, Fe, Zn, and B in Plant Tissue- digestion in HCl -1.0g tissue
 - Total Kjeldahl Nitrogen (TKN)- digestion in H₂SO₄
 -0.2g tissue
- Total N- Combustion method

NUTRIENT MANAGEMENT FOR...

A

³⁶ 6:52

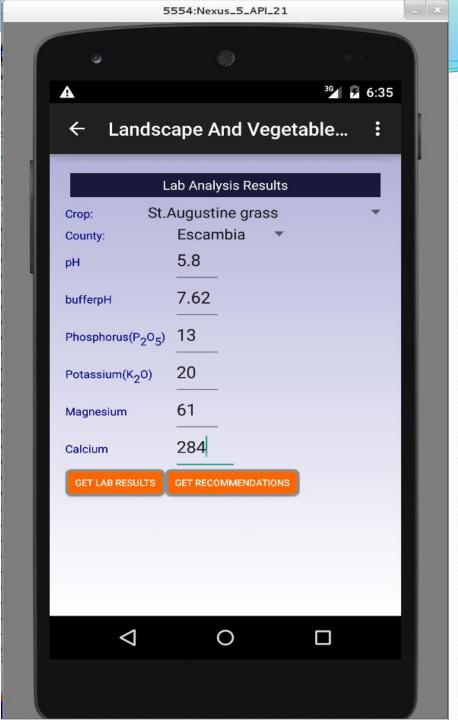
NUTRIENT MANAGEMENT

FOR

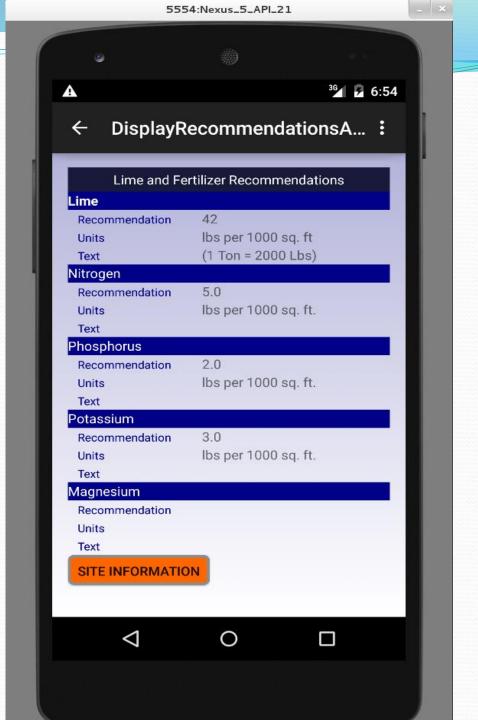
FLORIDA

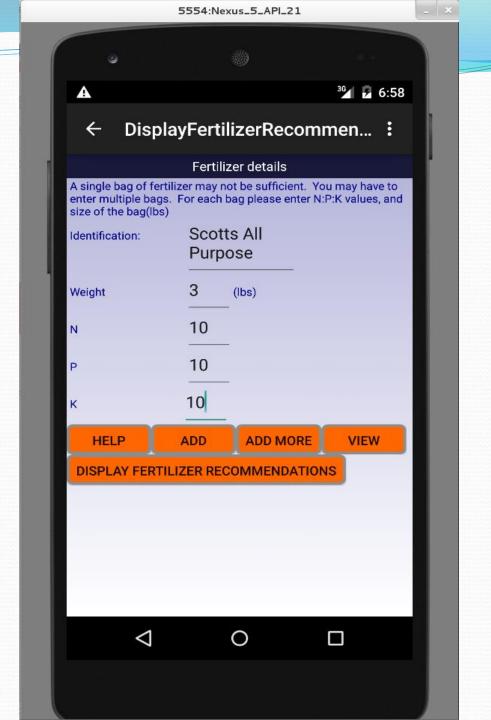
EXTENSION SOIL TESTING LABORATORY

SOIL & WATER SCIENCE DEPARTMENT, IFAS


UNIVERSITY OF FLORIDA

Dr. Rao Mylavarapu


0


 \bigtriangledown

³⁶ 1 ≥ 4:00	
VIE FLORIDA Select Lab Number	
Select Lab Number	
Please enter username, password, and Lab number and then click on Get Lab Results to retrieve lab results from the lab, or click on Cancel to return to the previous screen	
UserId: migration	
Password Lab Number 25569	
Cancel Get Lab Results	

	5554:Nexus_5_API_21	- ×
•	٢	
A	36	6:54
← Disp	layRecommendationsA	:
	Site Information	
Site Area	800 sq ft.	
Shape		
Distance walked		
	ILIZER RECOMMENDATIONS	
DISPLAT PERI	ILIZER RECOMMENDATIONS	
_		
\triangleleft	0 🗆	

UF/IFAS ESTL Procedures

UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual -CIRCULAR 1248 (2015)

-Mylavarapu, d'Angelo and Wilkinson

M-3 Extractant

Mylavarapu, R., T.A. Obreza, K. Morgan, G. Hochmuth, V. Nair and A. Wright. 2014. Extraction of Soil Nutrients Using Mehlich-3 Reagent for Acid-Mineral Soils of Florida. SL407, Soil & Water Science, IFAS Cooperative Extension Service, University of Florida, Gainesville, FL 32611. pp7.

(http://edis.ifas.ufl.edu/ss620)

Nutrient Recommendations for Agronomic Crops

UF/IFAS Standardized Fertilization Recommendations for Agronomic Crops. Fact Sheet SL-129

-Mylavarapu, R., D. Wright, G. Kidder and C. Chambliss (2015)

IFAS Extension Publications can be obtained from http://edis.ifas.ufl.edu

On the Web –

SOILSLAB.IFAS.UFL.EDU

Email-

SOILSLAB@ifas.ufl.edu

